Kingdom: Animals
Domain Eukarya

Click the "Slide Show" button at the lower right of the window to start the show. Then hit the SPACEBAR to advance.
Animal Characteristics

- **Heterotrophs**
 - must ingest others for nutrients
- **Multicellular**
 - complex bodies
- **No cell walls**
 - allows active movement
- **Sexual reproduction**
 - no alternation of generations
 - no haploid gametophyte
Animal Evolution

- Porifera: sponges
- Cnidaria: jellyfish, flatworms
- Platyhelminthes: roundworms, mollusks
- Nematoda: segmented worms
- Mollusca: mollusks
- Annelida: segmented worms, insects, spiders
- Arthropoda: starfish, vertebrates (with backbone)
- Echinodermata: radial symmetry
- Chordata: bilateral symmetry, coelom, endoskeleton

Key Features:
- Multicellularity
- Specialization & ↑ body complexity
- Redundancy, specialization, ↑ mobility
- Segmentation
- Body cavity: ↑ body complexity, ↑ digestive & repro sys
- Body size: ↑ mobility, ↑ body & brain size, ↑ mobility
- Tissues: specialized structure & function, muscle & nerve tissue
- Distinct body plan; cephalization
- Specialization & ↑ body complexity
Body Cavity

- **Space for organ system development**
 - increase digestive & reproductive systems
 - increase food capacity & digestion
 - increase gamete production

- **Coelem**
 - mesoderm & endoderm interact during development
 - allows complex structures to develop in digestive system
 - ex. stomach

acoelomate
- ectoderm
- mesoderm
- endoderm

pseudocoelomate
- ectoderm
- mesoderm
- endoderm
- pseudocoel

coelomate
- ectoderm
- mesoderm
- endoderm
- coelom cavity

protostome vs. deuterostome
Invertebrate: Porifera

- Sponges
 - no distinct tissues or organs
 - do have specialized cells
 - no symmetry
 - sessile (as adults)

food taken into each cell by endocytosis
Invertebrate: Cnidaria

- Jellyfish, hydra, sea anemone, coral
 - tissues, but no organs
 - two cell layers
 - radial symmetry
 - predators
 - tentacles surround gut opening
 - extracellular digestion
 - release enzymes into gut cavity
 - absorption by cells lining gut

(a) Sea anemone: a polyp
(b) Jelly: a medusa
Stinging cells of Cnidarians

- **Hydra**
- **Tentacles**
- **Sensory cell**
- **Stinging cell**
- **Trigger**
- **Undischarged nematocyst**
- **Discharged nematocyst**
Invertebrate: Platyhelminthes

- Flatworms
 - tapeworm, planaria
 - mostly parasitic
 - bilaterally symmetrical
 - have right & left & then have head (anterior) end & posterior end
 - cephalization = development of brain
 - concentration of sense organs in head
 - increase specialization in body plan

Animals now face the world head on!

acoelomate

- ectoderm
- mesoderm
- endoderm
Invertebrate: Nematoda

- **Roundworms**
 - bilaterally symmetrical
 - body cavity
 - pseudocoelom = simple body cavity
 - digestive system
 - tube running through length of body (mouth to anus)
 - many are parasitic
 - hookworm
Invertebrate: Mollusca

- Mollusks
 - slugs, snails, clams, squid
 - bilaterally symmetrical (with exceptions)
 - soft bodies, mostly protected by hard shells
 - true coelem
 - increases complexity & specialization of internal organs
Invertebrate: Annelida

- Segmented worms
 - earthworms, leeches
 - segments
 - increase mobility
 - redundancy in body sections
 - bilaterally symmetrical
 - true coelem
Invertebrate: Arthropoda

- Spiders, insects, crustaceans
 - most successful animal phylum
 - bilaterally symmetrical
 - segmented
 - specialized segments
 - allows jointed appendages
 - exoskeleton
 - chitin + protein
Arthropod groups

arachnids
8 legs, 2 body parts
spiders, ticks, scorpions

crustaceans
gills, 2 pairs antennae
crab, lobster, barnacles, shrimp

insects
6 legs, 3 body parts
Invertebrate: Echinodermata

- Starfish, sea urchins, sea cucumber
 - radially symmetrical as adults
 - spiny endoskeleton
 - deuterostome

loss of bilateral symmetry?
Invertebrate quick check…

- Which group includes snails, clams, and squid?
- Which group is the sponges?
- Which are the flatworms?
 - ...segmented worms?
 - ...roundworms?
- Which group has jointed appendages & an exoskeleton?
- Which two groups have radial symmetry?
- What is the adaptive advantage of bilateral symmetry?
- Which group has no symmetry?
Chordata

- **Vertebrates**
 - fish, amphibians, reptiles, birds, mammals
 - internal bony skeleton
 - backbone encasing spinal column
 - skull-encased brain
 - deuterostome

Oh, look... your first baby picture!
Vertebrates: Fish

- **Characteristics**
 - **body structure**
 - bony & cartilaginous skeleton
 - jaws & paired appendages (fins)
 - scales
 - **body function**
 - gills for gas exchange
 - two-chambered heart; single loop blood circulation
 - ectotherms
 - **reproduction**
 - external fertilization
 - external development in aquatic egg

- salmon, trout, sharks

450 mya
Transition to Land
Evolution of tetrapods

Lobe-finned fish

Early amphibian
Vertebrates: Amphibian

- **Characteristics**
 - **body structure**
 - legs (tetrapods)
 - moist skin
 - **body function**
 - lungs (positive pressure) & diffusion through skin for gas exchange
 - three-chambered heart; veins from lungs back to heart
 - ectotherms
 - **reproduction**
 - external fertilization
 - external development in aquatic egg
 - metamorphosis (tadpole to adult)

350 mya

- frogs
- salamanders
- toads
Vertebrates: Reptiles

- Characteristics
 - body structure
 - dry skin, scales, armor
 - body function
 - lungs for gas exchange
 - thoracic breathing; negative pressure
 - three-chambered heart
 - ectotherms
 - reproduction
 - internal fertilization
 - external development in amniotic egg

250 mya

- dinosaurs, turtles
- lizards, snakes
- alligators, crocodile

Diagram of reptile development:
- leathery shell
- embryo
- chorion
- amnion
- allantois
- yolk sac
Vertebrates: Birds (Aves)

- Characteristics
 - body structure
 - feathers & wings
 - thin, hollow bone; flight skeleton
 - body function
 - very efficient lungs & air sacs
 - four-chambered heart
 - endotherms
 - reproduction
 - internal fertilization
 - external development in amniotic egg

150 mya

finches, hawk
ostrich, turkey

AP Biology
Vertebrates: Mammals

- **Characteristics**
 - **body structure**
 - hair
 - specialized teeth
 - **body function**
 - lungs, diaphragm; negative pressure
 - four-chambered heart
 - endotherms
 - **reproduction**
 - internal fertilization
 - internal development in uterus
 - nourishment through placenta
 - birth live young
 - mammary glands make milk

- 220 mya / 65 mya
- mice, ferret, elephants, bats, whales, humans
Vertebrates: Mammals

- **Sub-groups**
 - **monotremes**
 - egg-laying mammals
 - lack placenta & true nipples
 - duckbilled platypus, echidna
 - **marsupials**
 - pouched mammals
 - offspring feed from nipples in pouch
 - short-lived placenta
 - koala, kangaroo, opossum
 - **placental**
 - true placenta
 - nutrient & waste filter
 - shrews, bats, whales, humans
Vertebrate quick check…

- Which vertebrates lay eggs with shells?
- Which vertebrates are covered with scales?
- What adaptations do birds have for flying?
- What kind of symmetry do all vertebrates have?
- Which vertebrates are ectothermic and which are endothermic?
- Why must amphibians live near water?
- What reproductive adaptations made mammals very successful?
- What characteristics distinguish the 3 sub-groups of mammals?
That’s the buzz!
Any Questions?